skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Win, Allison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Exciton dynamics o perovskite nanoclusters has been investigated or the rst time using emtosecond transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopy. The TA results show two photoinduced absorption signals at 420 and 461 nm and a photoinduced bleach (PB) signal at 448 nm. The analysis o the PB recovery kinetic decay and kinetic model uncovered multiple processes contributing to electron−hole recombination. The ast component (∼8 ps) is attributed to vibrational relaxation within the initial excited state, and the medium component (∼60 ps) is attributed to shallow carrier trapping. The slow component is attributed to deep carrier trapping rom the initial conduction band edge (∼666 ps) and the shallow trap state (∼40 ps). The TRPL reveals longer time dynamics, with modeled lietimes o 6.6 and 93 ns attributed to recombination through the deep trap state and direct band edge recombination, respectively. The signicant role o exciton trapping processes in the dynamics indicates that these highly conned nanoclusters have deect-rich suraces. 
    more » « less
  2. Abstract BackgroundResearch into perovskite nanocrystals (PNCs) has uncovered interesting properties compared to their bulk counterparts, including tunable optical properties due to size‐dependent quantum confinement effect (QCE). More recently, smaller PNCs with even stronger QCE have been discovered, such as perovskite magic sized clusters (PMSCs) and ligand passivated PbX2metal halide molecular clusters (MHMCs) analogous to perovskites. ObjectiveThis review aims to present recent data comparing and contrasting the optical and structural properties of PQDs, PMSCs, and MHMCs, where CsPbBr3PQDs have first excitonic absorption around 520 nm, the corresponding PMSCS have absorption around 420 nm, and ligand passivated MHMCs absorb around 400 nm. ResultsCompared to normal perovskite quantum dots (PQDs), these clusters exhibit both a much bluer optical absorption and emission and larger surface‐to‐volume (S/V) ratio. Due to their larger S/V ratio, the clusters tend to have more surface defects that require more effective passivation for stability. ConclusionRecent study of novel clusters has led to better understanding of their properties. The sharper optical bands of clusters indicate relatively narrow or single size distribution, which, in conjunction with their blue absorption and emission, makes them potentially attractive for applications in fields such as blue single photon emission. 
    more » « less